\begin{tabbing} $\forall$$C$:es\_realizer\{i:l\}. \\[0ex]R{-}sub\=\{i:l\}\+ \\[0ex]($C$; $C$) \-\\[0ex]$\wedge$ \=($\forall$$A$:es\_realizer\{i:l\}. \+ \\[0ex]R{-}sub\=\{i:l\}\+ \\[0ex]($C$; $A$) \-\\[0ex]$\Rightarrow$ ($\forall$$B$:es\_realizer\{i:l\}. R{-}sub\{i:l\}($C$; Rplus($A$; $B$)) $\wedge$ R{-}sub\{i:l\}($C$; Rplus($B$; $A$)))) \- \end{tabbing}